A tight bound of the largest eigenvalue of sparse random graph

نویسنده

  • Tomonori Ando
چکیده

We analyze the largest eigenvalue and eigenvector for the adjacency matrices of sparse random graph. Let λ1 be the largest eigenvalue of an n-vertex graph, and v1 be its corresponding normalized eigenvector. For graphs of average degree d log n, where d is a large enough constant, we show λ1 = d log n + 1 ± o(1) and 〈1, v1〉 = √ n ( 1−Θ ( 1 logn )) . It shows a limitation of the existing method of analyzing spectral algorithms for NP-hard problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectra of Lifted Ramanujan Graphs

A random n-lift of a base graph G is its cover graph H on the vertices [n]×V (G), where for each edge uv in G there is an independent uniform bijection π, and H has all edges of the form (i, u), (π(i), v). A main motivation for studying lifts is understanding Ramanujan graphs, and namely whether typical covers of such a graph are also Ramanujan. Let G be a graph with largest eigenvalue λ1 and l...

متن کامل

Isoperimetric Inequalities and Eigenvalues

An upper bound is given on the minimum distance between i subsets of the same size of a regular graph in terms of the i-th largest eigenvalue in absolute value. This yields a bound on the diameter in terms of the i-th largest eigenvalue, for any integer i. Our bounds are shown to be asymptotically tight. A recent result by Quenell relating the diameter, the second eigenvalue, and the girth of a...

متن کامل

The Largest Eigenvalue Of Sparse Random Graphs

We prove that for all values of the edge probability p(n) the largest eigenvalue of a random graph G(n, p) satisfies almost surely: λ1(G) = (1 + o(1))max{ √ ∆, np}, where ∆ is a maximal degree of G, and the o(1) term tends to zero as max{ √ ∆, np} tends to infinity.

متن کامل

Sparse pseudo-random graphs are Hamiltonian

In this article we study Hamilton cycles in sparse pseudorandom graphs. We prove that if the second largest absolute value of an eigenvalue of a d-regular graph G on n vertices satisfies

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009